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Imagine designing a wild
intensity frontier experiment

® Lets dream! What if we could:

@ Take ~3 x 10%° kg of matter and convert it to pure

energy, in the form of 10°® neutrinos with energies of
107 eV.

@ Create a ball of matter so dense (10'*-10'* g/cm?, nuclear
densities) that it is be opaque even for neutrinos.
Measure its cooling properties as a function of time.

@ Create a dense neutrino gas (108-10'° moles of neutrinos/
cm?). Let this system expand. Measure the resulting
collective flavor oscillation dynamics.
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This experiment is carried out
In a core-collapse supernova!

@ Inner ~ 1.4 M@ of material collapses to a super-dense object
just a few tens of km across

@ Gravitational binding energy of the collapsed core, ~GM?/R,
equals to about 10% of its rest mass

@ It is emitted in 10°® neutrinos in a burst lasting 8t ~ seconds
@ Neutrino diffusion time scale

@ At ~ 100 km, the number density of streaming neutrinos is
o ~ 10%8/4mrecst ~10% cm3

@ Comparable to the number density of matter
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Evolution of the explosion
is reflected in neutrinos

@ Neufronization burst, accretion and cooling phases can
all be seen in neutrinos

@ Importantly, different for different progenitor masses
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Fig from Fischer, Whitehouse, Mezzacappa, Thielemann, Lielbendorfer, arXiv:0908.1871
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Measure each of the
phases

@ The Neutronization burst provides information about the onset
of the explosion, shock breakout through the neutrinosphere;
also, a useful sharp time structure

@ During the Accretion stage the shock stalls at a few hundred
km; we need to know when and how it is reenergized

@ 50-year question in SN theory!

@ Cooling stage ends with the formation of a neutron star or a
black hole. The signal is sensitive to new physics contributions fo
cooling (light hidden sector!). Monitor how the shock travels out
and the turbulent bubble behind expands.

@ May be possible thanks to neutrino oscillations!
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Cooling bounds on new
physics

@ Two dozen neutrinos observed from 1987A confirmed the
rough picture of core-collapse supernovae as gravity-
powered neuirino bombs

@ This limited dataset already provides some of the best
Known constraints on many classes of new physics models
with light, weakly interacting degrees of freedom

@ nonstandard neutrinos, axions, KK gravitons, extra-dim
photons/unparticles, dark photons ...

@ If this can be done with ~20 events, how about
thousands of events expected from the next Galactic SN?
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Once-in-a-lifetime
opportunity

@ The next SN likely to give
@ 10* electron antineutrinos at SK (10> at HyperK)

@ plus hundreds (thousands) of nu-e elastic
scattering events

® several thousand electron neutfrinos at
"(E)LBNE/F”, potentially with good energy
resolution

@ Second-by-second evolution of the spectra
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Gold mine of physics
information

@ Cooling curves carry information about
neutrino trapping, dynamics of the explosion,
state of nuclear matter in the cenfter,
equation of state as a function of density,
new physics contributions to energy
transport ..

® Nature does not seem to know or care about

the separation between the different DOE
offices!
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Theory required part of
"technology”!

@ For example, lets say we would like to measure the total
energy release

@ Energy is released in neutrinos and antineutrinos of all
flavors

@ Just measuring nu-e-bars is not enough

® Measuring of neutral current rate helps, but also not
enough, if the spectrum of nu-x is unknown

@ Fortunately, neutrinos oscillate. If we can understand the
oscillation pattern, we can infer the total energy released,
second-by-second
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The richest and most challenging
neutrino oscillations problem known

@ Possible matter effect in the Earth
@ "Solar” MSW in the outer envelope of the progenitor

@ "Atmospheric” MSW in the outer envelope of the
progenitor

@ Turbulent region behind the shock
@ Collective oscillations near the neutrino-sphere

@ This is schematic, the order of some of these
ingredients could be interchanged, depending on the
progenitor mass, stage of the explosion
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Earth effect

@ The density of the Earth is close to resonant for the “solar”
splitting and 20-40 MeV SN neutrinos

o cf. the D/N effect in B solar neutrinos is expected at
high energies

@ Can help to distinguish between different mixing scenarios
@ See, e.q.,

@ Smirnov, Spergel & Bahcall, PRD 1994

@ Lunardini & Smirnoy, arXiv:hep-ph/0009356

@ Dighe, Kachelriess, Raffelt & Tomas, arXiv:hep-ph/0311172
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Sun: 2-state oscillations

Pov, —we) "= i 008 cos Beos 0

@ The evolution is adiabatic (no level jumping), since losc <<
density scale height (|d Inp/dr|™)

@ Hint: for most of the Sun, the density scale height is Rsun/
10, while losc is comparable to the width of Japan
(KamLAND)
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SN v oscillations: 2 MSW
densities

“regular MSW"
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SN MSW transformations,
schemartics

- Given the scale height in
the progenitor, the
evolution is very adiabatic

- the adiabaticity of the
atmospheric resonance
is controlled by thetal3

- Prediction for the nue
signal during the

neutronization burst is
critically dependent on the
sign of MH

For inverted hierarchy, the same happens in antineutrinos.
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Dynamical density profile

108
radius

* Front shock reaches the regions where “atmospheric” and “solar”
transformations happen, while neutrinos are being emitted

- See Schirato & Fuller (2002) astro-ph/0205390
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Moving shock and MSW
transformations

- The shock is
infinitely sharp from
the neutrinos’ point
of view (photon
mean free path).

- When it arrives at
the resonance, the
evolution becomes
non-adiabatic.

For inverted hierarchy, the same happens in antineutrinos.
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3D simulations show
turbulence

@ 3d simulations of the
accretion shock instability
Blondin, Mezzacappa, &
DeMarino (2002)

@ See http:// 4 .
www.phy.ornl.gov/tsi/ o
pages/simulations.html

@ extensive, well-developed
turbulence behind the
shock P
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Turbulence makes neutrinos
diffuse in the flavor space
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® Need to estimate the rate of diffusion

@ Given large-scale fluctuations in published simulations
(order 1) and the large measured value of thetals,
observable signal expected a few seconds into the
explosion
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Some technical details

@ The level-jumping probability depends on fluctuations
@ relevant scales are small, O(10 km)

@ take large-scale fluctuations from simulations,
scale down with a Kolmogorov-like power law

@ contributions of different scales to the level-
jumping probability are given by the following
spectral integral

GF

k
o \/ing)/dw(k)G(zAste)’

for details, see Friedland & Gruzinov, astro-ph/
0607244
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Neutrino “self-refraction”

Fuller et al, Notzold & Raffelt 1988;

@ Neutrinos undergo flavor Pantaleone 1992: ..
conversion in the background Duan, Fuller, Qian, Carlson, 2006;
of other neutrinos LA

@ The neutrino induced
contribution depends on the
flavor states of the
background neutrinos

V2Gr 3 ni(1 - cos O50)465) (1
p

@ One has to evolve the
neutrino ensemble as a whole

"Background" L
Vyz = COS Qe + SIN QuV/y,

@ Rich many-body physics, with Figure from

many regimes Friedland & Lunardini,
Phys. Rev. D 68, 013007 (2003)
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SN v: summary physics
cartoon
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Nonlinearity + collective
effects at work

@ Evolution of the collective
mode as a function of
radius
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@ My calculation with

@ two flavors (so that I
draw a 3D picture)

@ single-angle
approximation (see later)

@ realistic late-time

spec’rra r=124.20 km
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See LBNE physics working group report
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Collective oscillations
must be done in 3 flavors

@ Example where the solar : .
mass splitting is turned on ve at 1000 km, different Amy

gradually

2 _
Am 5 =0
Amé =0.01(std. val.)
Amé =0.2(std. val.)
Amé =0.5(std. val.)

initial v,

o At Amo?=0, 2-flavor
result is reproduced

& As soon as A mo2#0, the

answer is closer to the
realistic A ms2 than to

A m@2=O

initial v,

@ 2-flavor trajectory can be neutrino energy [MeV]
unstable in the 3-flavor space

For details, see Friedland, PRL (2010);

also Dasgupta, Dighe, Raffelt, Smirnov, PRL (2009)
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What are we looking for?
Smoking- gunfeafuresy

Modeling
mulfiangle
collective +

shock — Tstspocium : _ ’ i —
by A. F.

Detector
model by K. _ . :
SC hOl b erg ) % eV 10 20 30 a0 Observe 5d0 energy (Pﬂg\n

@ The neutrino spectrum is modulated, but not
antineutrinos (simultaneously observed by SK/HK)
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Accretion phase: neutrinos
scattering above v-sphere?

v-sphere

L'

L'

10° 107
radius [cm]
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Much work is still fo be
done!

® The role of matter in collective oscillations
@ Do they always factorize?

@ Dependence of collective transformations on luminosities and
temperatures of different components

@ Transition from sharp spectral splits to decoherence

@ Breaking of spherical symmefry

® e.g., Raffelt, Sarikas de Sousa Seixas, PRL 111, 091101 (2013)

o Effects of nonstandard physics

® e.g., de Gouvea and Shalgar, JCAP (2012, 2013)
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P.S. To DOE program management:

Your donations welcome!

Investment of even 5 percent of $10M

could make a world of difference




